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Abstract—Marine sediments around urban areas serve as catch basins for anthropogenic particles containing polycyclic aromatic
hydrocarbons (PAHSs). Using incubations with gut fluids extracted from a deposit-feeding polychaete (Arenicola marina), we
determined the digestive bioavailability of PAHs from fly ashes, coal dusts, diesel soots, tire tread materials, and urban particul ates.
We found that gut fluids sol ubilize significant concentrations of PAHsfrom two tiretreads, two diesel soots, and the urban particul ates.
However, PAHs in fly ashes and coal dusts were not available to the digestive agents in gut fluid. Potential digestive exposure to
PAHs is much greater than that predicted to be available from these material s using equilibrium partitioning theory (EqP). Amending
an already-contaminated sediment with fly ash decreased phenanthrene solubilization by gut fluid. In contrast, addition of tire tread
to the sediment resulted in increased solubilization of four PAHs by gut fluid. Therefore, addition of certain types of anthropogenic
particles to sediments may result in an increase in bioavailable PAHs rather than a net decrease, as predicted by EqPR. Difficulty in
predicting the amount of change due to amendment may be due to interactions occurring among the mixture of compounds solubilized

by gut fluid.
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INTRODUCTION

Marine sediments around urban areas serve as repositories
for anthropogenic particles (AP) including aerosols from the
combustion or pyrolysis of organic materials (e.g., soot car-
bon), and particles derived from asphalt, brake-linings, tire
treads, and material from construction sites. Delivery of these
particles via atmospheric deposition and surface-water runoff
leads to their elevated concentrations in sediments. These par-
ticles constitute the majority of nonmineral matter in sediments
around cities. For example, up to 30% of total organic carbon
in coastal sediments is from soot [1]. Furthermore, tire tread
debris approaches 15% of the total sediment (by mass, in-
cluding minerals) in areas surrounded by heavy automobile
traffic (C. Reddy, Woods Hole Oceanographic Institution,
Woods Hole, MA, USA, personal communication and [2,3]).

Organic solvent extractions of many types of AP (e.g., soot,
coal, and tire treads) release polycyclic aromatic hydrocarbons
(PAHSs), which are a class of hydrophobic contaminants that
can havetoxic and carcinogenic effects on marine animals (see
review in [4]). Sediments close to urban areas show charac-
teristic PAH enrichments, and presumably much of the PAH
is associated with AP, although petrogenic sources of PAHs
also may be present [5]. Though clearly a global trend and
problem [6], PAH contamination of sediments surrounding the
United States is particularly well documented and pervasive
[7,8]. In Boston Harbor (USA), for example, sedimentary con-
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centrations of individual PAHs range as high as 120 ng g*
[9,10].

Though available to organic solvents, much of the PAHs
associated with AP are sequestered in forms that are not
thought to be bioavailable (i.e., not available to animals). Bio-
availahility is a function of both the geochemical character-
istics of the AP as well as the specific physiological pathways
that expose a particular organism to contaminants. For ex-
ample, pyrogenic materials like soot carbon and fly ashes sorb
PAHSs very strongly and, when present in sediments, can de-
press interstitial water concentrations of PAHs [11,12]. For
animals exposed to PAHs only via interstitial water, the PAHs
associated with pyrogenic AP ought to be less bioavailable
than petrogenic PAHs. Empirical studies of soot carbon [13—
15] and coal-associated PAHs [16-18] in sediments generally
have conformed; the biological effects of PAHs are suppressed.

Deposit feeders conspicuously are rare in areas with high
concentrations of PAHSs, even when associated with pyrogenic
AP [19], suggesting an additional route of exposure besides
interstitial water for these animals. Recent results suggest that
deposit feeders receive the majority of their exposure to sed-
imentary organic contaminants via digestion [20-23]. Surfac-
tant micelles are responsible for the bulk of sedimentary PAH
solubilization in a deposit-feeder’s gut fluids [10] and form a
nonpolar pseudophase for the mobilization of hydrophobic
compounds. As a result of micelle formation, digestive fluids
may be better able than interstitial water, both kinetically and
thermodynamically, to solubilize PAHs from AP,

We studied extractability of 12 PAHs from nine types of
AP by digestive fluids of a deposit-feeding polychaete, Ar-
enicola marina. Then, we determined whether patterns of PAH
release from AP aone hold under more realistic conditionsin
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Table 1. Sample descriptions; Standard Reference Material (SRM)

Sample Source

Description

GF80A tire tread
GRA16 tire tread
Diesel soot
Kingstown, RI, USA)
SRM 1650 diesel soot

SRM 1649 urban particulates
Valley Power Plant coal dust

Dal-Tex coal dust

MA, USA)
Class F fly ash Wisconsin Electric (Milwaukee, W1, USA)
Modified fly ash U.S. Generating Company (Somerset, MA,

USA)

Rouse Rubber (Vicksburg, MS, USA)
Baker Rubber (South Bend, IN, USA)
Interstate Diesel Equipment Service (North

National Institute of Standards and
Technology (Gaithersburg, MD, USA)

National Institute of Standards and
Technology (Gaithersburg, MD, USA)

Wisconsin Electric (Milwaukee, W1, USA)

New England Power Company (Somerset,

Extremely fine, black powder

Coarse, black powder

Fine, black powder scraped from exhaust systems of
diesel vehicles

Fine, black powder collected from a heat exchanger fed
by four diesel engines

Very fine, atmospheric particulate material collected with
large-diameter filters

Unburned, fine, black, bituminous coal powder from
Pennsylvania

Unburned, coarse, black, bituminous coal powder from
Pennsylvania/West Virginia

Burned, very fine, gray-black, bituminous coal powder
from Colorado

Burned, very fine, high-carbon powder prepared in
proprietary process used to separate bituminous
Venezuelan coal fly ash into high- and low-carbon
fractions

which AP are only a fraction of a contaminated sediment (by
wt) by using a sediment amended with either a tire tread or a
fly ash. These in vitro incubations mimic the digestive solu-
bilization of compounds, but not their uptake across the di-
gestive tract (assimilation) or metabolic transformations that
occur once inside the animal (biotransformation). The impor-
tance of the digestive pathway of exposure is made clear by
comparison of the amount of PAHs solubilized by digestive
fluids to the amount predicted to be dissolved freely in inter-
stitial water by equilibrium partitioning theory.

MATERIALS AND METHODS
Collection of A. marina

Arenicola marina (lugworms) were dissected to remove
midgut digestive fluids as described previously [10], except
that gut fluids were extracted on the day of collection and were
clarified by filtration (0.45-um polytetrafluorethylene mem-
brane) instead of centrifugation. Arenicola marina has sur-
factant micelles in the digestive tract [24], which are respon-
sible for the bulk of PAH solubilization, though other com-
pounds such as proteins probably also are involved [10]. The
gut fluid used in this study was surfactant-rich, having acritical
micelle dilution of approximately 20% using the contact angle
dilution method [24]. In other words, gut fluids required 80%
dilution with artificial seawater before surfactant micelles
would disassociate into individual surfactant monomers.

AP characterization

A variety of AP were acquired (Table 1). Samples were
donated by the company named in the Source column of Table
1, except for Standard Reference Material (SRM) 1650 Diesel
Soot and SRM 1649 Urban Particul ates, which were purchased
from the U.S. National Institute of Standards and Technology
(www.nist.org). Standard Reference Material 1649 was col-
lected from urban atmospheres with alarge-diameter filter and
presumably is weathered. The SRM 1650 was collected from
heat exchangers after 200 h of diesel engine operation. The
other samples were collected directly from their sources, with-
out environmental mixing or weathering, and were used with-
out additional modification.

All particles were analyzed for total organic carbon (TOC)
using either a Perkin-Elmer Series || CHNO/S 2400 el emental

analyzer (Wilton, CT, USA) or Carlo Erba NA 1500 elemental
analyzer (Fisons Instruments, Beverly, MA, USA). Samples
were treated by direct acidification with 1 M HCI to remove
calcium carbonate. Soot carbon for all sampleswas determined
using a thermal fractionation method (375°C for 24 h with
excess oxygen, [25]). Surface area was measured by N, ad-
sorption and multipoint Brunauer, Emmett, and Teller (B.E.T.)
analysis of freeze-dried samples, except for the tire tread sam-
ples. Both tire tread materials liquefied when subjected to the
high temperatures (150°C) required for complete outgassing
of N,; thus, measured values did not represent the samples’
true environmental state.

To measure total PAH concentrations in these particles,
approximately 0.5 g of each dry sample was extracted with
50 ml of acetone/dichloromethane in a wrist-action shaker
(Burrell, Pittsburgh, PA, USA) for 48 h at a medium mixing
rate. After extraction, the solvent was passed through a glass
fiber filter ([GF/C], Whatman International, Maidstone, UK),
dried with anhydrous sodium sulfate, and the contents trans-
ferred to a turbo-evaporation tube (Zymark, Hopkinton, MA,
USA) for volume reduction and exchanged into hexane. Final
extracts were stored at 4°C in the dark until analyzed by gas
chromatography/mass spectrometry (GC/MS) using aHewlett-
Packard 5890 Series |l gas chromatograph (Avondale, PA,
USA) equipped with a 7673A autosampler, electronic pressure
control, and 5971A mass sel ective detector monitoring ions at
188, 240, 264 (internal standards phenanthrene-10d, ben-
zo[a]anthracene-12d and perylene-12d, respectively), and tar-
get PAH mass units. Polycyclic aromatic hydrocarbon con-
centrations in the samples were adjusted for the recovery of
internal standards and quantified by comparison to peak areas
from calibration standards of authentic compounds (Supelco,
Belafonte, PA, USA). A multipoint (4-5 level) internal stan-
dard calibration curve was used to determine calibration re-
sponse factors. Limits of detection were approximately 0.01
g g~* for individual PAHSs.

Collection of sediment

During a low tide, sediment was collected with a shovel
from Little Mystic Channel (LMC), Boston Harbor (MA,
USA). Within a day of collection, sediment was twice washed
to remove salt with artificial seawater/deionized water (5/95
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by volume), centrifuged at 8,000 g for 15 min, freeze-dried,
and stored in the dark at 5°C. Sediment from this location is
highly contaminated with PAHs and has elevated organic car-
bon:specific surface area ratios that suggest an already heavy
loading with anthropogenically derived organic material [10].
Although amore pristine sediment may have provided aclearer
test of how release of PAHs from AP occurs in sediment, our
choice of LMC sediment was an effort to maintain environ-
mental realism with regards to the types of sediment that ac-
tually are impacted by AP

Gut fluid incubations

Arenicola marina gut fluid was incubated in triplicate for
4 h in the dark with approximately 0.05 g of each sample at
a solid-fluid ratio of approximately 0.05 g ml-*. This solid-
fluid ratio was lower than the sediment-fluid ratio normally
found in a deposit-feeder’s gut [26], but ensured that enough
fluid would be avail able for analysis after incubation with these
low-density materials. Gut fluids were clarified by filtration
(0.45 m) and then liquid/liquid extracted with nanopure water
and dichloromethane (DCM), partitioning PAHsinto the DCM
phase. Deuterated PAHs (phenanthrene-d10, ben-
zo[a]anthracene-d12, and benzo[a]pyrene-d12) were added to
the DCM extracts to serve as internal standards. Typical re-
coveries were 56 = 11%, 103 = 14%, and 111 = 28%, re-
spectively, and reported concentrations are corrected for their
recovery. Dichloromethane extracts were purified in the dark
by passage through sodium sulfate and ENVI-Florisil columns
(Supelco 5-7,058) to remove polar and sulfur compounds, and
dried under nitrogen gas at 38°C. Dried samples were recon-
stituted in 1:1 acetonitrile:water (v/v), passed through a 0.45-
wm syringe filter, and injected into a Hitachi D-7000 high-
pressure liquid chromatograph ([HPLC], Tokyo, Japan). A Vy-
dac 201 TP (Interchim, Montlucon, France), 5-pm, 250 X 4.6
mm column was used under the following operational con-
ditions: Flow rate = 1.0 ml min-?%; temperature = 29°C; in-
jection volume = 250 pl; mobile phase = 1:1 acetonitrile:
water (v/v) for 5 min, ramping to 100:0 in 15 min, and holding
for 8 min. Polycyclic aromatic hydrocarbons were identified
using retention time and absorbance spectrum when concen-
trations permitted and quantified using fluorescence detection.
Fluorescence detection limits were approximately 0.1 ng (L
gut fluid)~* for individual PAHSs.

Amended sediment incubations

To prepare amended sediments, freeze-dried LM C sediment
was mixed with GF80A tire tread at 3.25% and modified fly
ash at 3.48% (by wt). This amount is reasonable for sediments
close to the source of contamination as 0.6% soot was mea-
sured in outer Boston Harbor sediments [25]. Gut fluids were
incubated with just sediment (control) and each of the amended
sediments (treatments) at a solid-fluid ratio of approximately
0.25 g (ml)~%. This solid-fluid ratio is greater than that used
for pure AP incubations, but mimics in vivo conditions in
deposit-feeder guts [26]. Incubations and subsequent PAH
measurements were performed as described above.

Satistics

All values reported are means and standard deviations of
triplicate samples. The effects of added AP on gut fluids' re-
lease of PAHs from sediment were determined by analysis of
variance of contrasts between the unadulterated sediment (con-
trol) and each of the amended sediment treatments using Systat
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9 (SPSS, Chicago, IL, USA) statistical software on a PC com-
puter. Risk of type | error was controlled at 0.05.

RESULTS
AP characteristics

Organic solvents extracted PAHs from all of the samples
except for the fly ashes (Table 2). In the other AR, most in-
dividual PAH concentrations were on the order of several g
g~! (dry wt). Coal dusts were relatively enriched in phenan-
threne; diesel soots were enriched in phenanthrene and pyrene;
tire treads were enriched in pyrene; and SRM 1649 had a
uniform distribution of PAH concentrations. With GF80A tire
tread, matrix interferences apparently caused the benzofluor-
anthenes to elute as one peak during GC/MS analysis. As a
result, concentrations of the individual compounds ben-
zo[b]fluoranthene and benzo[k]fluoranthene were not deter-
mined and the sum of the benzofluoranthenes is reported in
Table 2 for GF80A tire tread. We believe this chromatographic
aberration affected only this particular sample.

Tire treads, diesel soots, and coal dusts all contained more
than 50% organic carbon, with significant fractions as soot
carbon. Our measurements of soot carbon may be biased pos-
itively, as the thermal oxidation method recently has been
accused of overestimating soot carbon [25]. These biases are
believed to result from both the protection of organic com-
ponents by the mineral matrix of sediments and condensation
reactions occurring among labile organic components such as
lipids, proteins, and carbohydrates.

Gut fluid release of PAHs from AP

Polycyclic aromatic hydrocarbon release to gut fluids varied
widely among the nine particles (Table 3). No PAH was de-
tected from fly ash after incubation with gut fluid, which was
expected as extraction with organic solvents indicated that
there were no PAHs in these samples (Table 2). No PAHs were
released from either of the coal dust samples, except for traces
of phenanthrene and pyrene at levels close to analytical de-
tection limits (0.1 pg LY.

Gut fluids released PAHs from GF80A and GR16 tire
treads, diesel soot, SRM 1649, and SRM 1650, but the amounts
released did not correlate strongly with the total PAHs present
in any of the samples, except for GR16 tire tread (i.e., Spear-
man nonparametric rank coefficients were all nonsignificant
with p > 0.05, except for GR16 tire tread [0.90, n = 5]). The
greatest concentration of PAHs released was benzo[a]pyrene
(B[a]P) from GF80A tire tread (50.6 ng L-1) (Table 3). Gut
fluid PAH concentrations were greater than seawater solubility
only for PAHs with molecular weight =252. Large variations
were associated with our measurements of PAHs in gut fluids
as reflected by the standard deviations of the data. The limited
amount of gut fluid available from A. marina forced little gut
fluid (1.0 ml) and small sample sizes (0.05 g) to be used during
incubations, which may have resulted in this variability. If
PAHs were highly concentrated on only a few particles, then
strong intersample heterogeneity would be expected to influ-
ence the amount of PAHSs released by gut fluids. Close in-
spection of the results did not reveal a systematic bias. For
example, there was no evidence of particular incubations hav-
ing unusually elevated gut fluid concentrations of all of the
PAHSs.

Significant fractions of some of the PAHs associated with
these particles were extractable in gut fluid. When calculated
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Table 4. Percentage of total polycyclic aromatic hydrocarbon (PAH) in the sample released to Arenicola
marina gut fluids. Standard Reference Material = SRM

GF-80A  GRI16 Baker

tire tread tire tread Diesel soot SRM 1650 SRM 1649
Phenanthrene 3.6 0.7 1.0 0.0 0.0
Anthracene 29 1.2 0.8 43.8 28.3
Fluoranthene 0.5 0.4 0.2 1.0 11
Pyrene 0.6 1.0 0.2 3.9 10.9
Benzo[a]anthracene 4.6 0.0 5.7 0.0 35
Chrysene 0.1 1.0 0.5 0.7 12
Benzo[b]fluoranthene 9.12 b 4.9 b 0.0
Benzo[K]fluoranthene a b 24 0.0 5.2
Benzo[a]pyrene 40.6 0.0 24.4 14.2 51
Dibenzo[a,h]anthracene 33.0 0.0 245.4¢ 0.0 0.0
Benzo[ghi]perylene 0.4 0.0 19 0.0 0.0
Indeno(1,2,3-cd)pyrene 0.0 0.0 0.0 0.0 0.0

aWe compared the gut fluid solubilization of benzo[b]fluoranthene and benzo[K]fluoranthene to the sum
of the benzofluoranthenes present in the sample.

b These PAHs were measured in gut fluid, but their total concentrationsin the sampleswere not measured.

¢ Dibenzo[ a,h]anthracene concentrations in gut fluid were greater than should be possible, considering
that the total concentration of this PAH in diesel soot was below detection limits (0.01 ng g%). We
suspect a co-eluting compound may have artificially elevated our measurement of this PAH in gut
fluid. Calculated using the average concentration of each PAH released by gut fluid.

no attempt to quantify PAHs smaller than phenanthrene,
though fly ashes would be suspected of having an especially
strong impact on the availability of these compounds.

Coal. Unburned coal can be a significant source of total
PAHs in marine coastal sediments [41-43]. Our coal dusts
contained PAHSs, as measurements of total PAHs indicate (Ta-
ble 2), but they are sequestered apparently in ways that make
them unavailableto the digestive agentsin gut fluid. Polycyclic
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Fig. 1. Amending Little Mystic Channel ([LMC], Boston Harbor, MA,
USA) sediment with GF80A tire tread increased the amount of poly-
cyclic aromatic hydrocarbon (PAH) solubilized by Arenicola marina
gut fluids and there was a significant increase in fluoranthene, ben-
zo[a]anthracene, benzo[K]fluoranthene, and dibenzo[a,h]anthracene
concentrations. The addition of modified fly ash decreased the amount
of phenanthrene released to gut fluids. No other PAH was affected.
An asterisk indicates a difference from control at p < 0.05.

aromatic hydrocarbons sorbed to coal particles have high de-
sorption activation energies [44] that inhibit dissolution into
water and digestive fluids. The weak digestive fluids of sus-
pension feeders like Crassostrea virginica and Mytilus edulis
and even the stronger fluids of the deposit feeders A. marina,
Rhepoxynius abronis, and Neanthes arenaceodentata, seem-
ingly cannot desorb PAHs from coal particles ([16,17] this
study). Therefore, while coal may have some detrimental bi-
ological effects on benthic animals by diluting sediment and
decreasing its volumetric nutritional content, PAHs associated
with this bituminous coal do not appear to be bioavailable.

Diesel soot. We found significant fractions of some PAHs
to be released to gut fluid from diesel soot samples. These
results are at odds with other research on the interstitial water
solubility (and assumed bioavailability) of diesel soot—PAHSs.
Soot-associated PAHs generally are thought to be less bio-
available than PAHs associated with sedimentary organic mat-
ter [13,14,18]. Diesel soot is a much stronger PAH adsorbent
than natural organic matter [1] and causes enhanced partition-
ing of sedimentary PAHSs to the particulate phase rather than
interstitial water [12]. However, our deposit feeder’s digestive
fluids solubilized PAHs from diesel soot at concentrations
greater than seawater solubility (Table 3) and much greater
than equilibrium partitioning would suggest (Fig. 2). These
results suggest that digestive micelles of deposit feeders may
access PAHSs in diesel soot that are not available to other
animals.

Two factors may have influenced our results. First, ap-
proximately 50% of the carbonaceous material in diesel soot
and 12% of that in SRM 1650 is removed by oxidation at
375°C and thus does not fit the analytical definition of soot-
like material proposed by [25]. This other fraction of organic
carbon in these soots may be responsible for part or al of the
bioavailable PAHs. Second, our clarification of gut fluid (pas-
sage through a 0.45-pm filter) may not have removed all soot
particulates from the fluid-phase after incubation; for example,
soot particlesas small as 180 nm are discerned when suspended
in ethanol [25]. If such particles were present in gut fluid after
clarification, then PAH measurements would include PAHs
associated with colloidal particles, rather than only solubilized
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Fig. 2. Gut fluids solubilize more polycyclic aromatic hydrocarbon (PAH) from anthropogenic particles than would be predicted by equilibrium
partitioning theory. The y-axis is the amount of PAH measured in gut fluids divided by that predicted to be dissolved by equilibrium partitioning
theory ([EqP], Egn. 3). Values greater than 1 on the y-axis represent more digestively available PAH than EgP would have predicted. Soot-
partitioning coefficients were not available for all PAHSs; therefore, fewer PAHs are in the graph on the right. Standard Reference Material (SRM).

PAHs, and thus overestimate bioavailability. It is not clear
whether particles this small would be present in an aqueous
system like gut fluid, as soot cannot be suspended in water
(("). Gustafsson, University of Stockholm, Stockholm, Sweden,
personal communication). Calculations indicate that 2.14 mg
of SRM 1650 diesel soot would have to pass through a 0.45-
wm filter in order to deliver enough solid-phase to match the
amount of B[a]P we measured in gut fluids. This mass of diesel
soot is equivalent to 5% of the amount in the incubation, which
likely would be visible. However, gut fluid filtrates were clear
to the naked eye. In fact, the gut fluid solubilization of PAHs
we noted from soots was not remarkable, actually quite rea-
sonable, when compared to amounts of release from contam-
inated sediments [10,21]. Therefore, though we cannot dis-
count solid-phase contamination of the gut fluids, we suspect
little bias due to the clarification step.

Tire tread materials. We believe this paper to be the first
report on the bioavailability of PAHs associated with tire tread
materials. Gut fluids incubated with tire treads alone released
many PAHs from these matrices. From GF80A tire tread, all
PAHs with molecular weight =252, except for indeno(1,2,3-
cd)pyrene, were solubilized at concentrations above agueous
solubility. From GR16 tire tread, chrysene and ben-
zo[K]fluoranthene were solubilized at the same concentration
as aqueous solubility (Table 3). As both types of tire treads
contained PAHs (Table 2), the differences in PAH solubili-
zation likely are due to compositional differences of the tires.
However, we have no other metrics with which to characterize
these samples. In general, tires contain a melange of organic
compounds from synthetic polymers and pitches, oils, tars,
rubber, and carbon black that have been mixed together to
modify the life and workability of thetire. Polycyclic aromatic
hydrocarbons generally make up over 200 ng g-* of the final
products [45,46].

The number of cars and trucks in urban areas suggests that
tire tread material may be a significant source of bioavailable
PAH contamination to surrounding sediments. Reddy and
Quinn [47] estimated that roughly 1.3 X 10° kg of tire is
released each year into the environment around the United
States. From the concentrations of benzothiazoles, the esti-
mated amounts of tire tread material in sediments can approach
15% by mass in areas surrounding heavy automobile traffic

such as the San Francisco—Oakland Bay Bridge (USA) [3] and
metropolitan Tokyo [2]. As benzothiazoles are water soluble
and photolytic [47], they may underestimate actual amounts
of tire particles in sediments. The relative bioavailability of
PAHSs from different tire tread formulations, therefore, may be
an important area for future research.

Urban particulates. Although PAHs associated with urban
dusts long have been known to have biological effects on
terrestrial mammals, we believe that this is the first test of
their digestive bioavailability to a marine deposit feeder.
Though PAH contamination in sediments around urban areas
often is thought to derive from urban dusts, only recently has
a molecular fingerprint been used to confirm this hypothesis;
thia-arene ratios characteristic of SRM 1649 were found in
bottom and suspended sediments from Hamilton Harbor (ON,
Canada) [48]. We found that SRM 1649 contained seven di-
gestively bioavailable PAHs (Table 3), which suggests a po-
tential biological impact of these particles on benthic com-
munities.

AP in sediments

Our amended sediment experiments were meant to address
the implications of AP additions to real world systems. A
number of conceptual models could be used to interpret our
results (e.g., EQP). According to EgP, addition of either GF80A
tire tread or modified fly ash to LM C sediment ought to reduce
the interstitial water concentration of all PAHs and presumably
would decrease their bioavailability. The additional sorptive
power of the added organic carbon phase has greater influence
than the added PAHs. However, these predicted changes in
PAH solubility are small and probably not detectable as they
arelessthan the standard deviations of our PAH measurements.
Therefore, for the fly ash treatment, in which there were no
changes of PAH concentrations except for phenanthrene, we
cannot rule out the validity of the soot-amended EqP model.

However, when tire tread materia is added, measured
changes in some PAH digestive bioavailabilities are opposite
EqQP predictions; that is, fluoranthene, benzo[a]anthracene,
benzo[k]fluoranthene, and dibenzo[a,h]anthracene concentra-
tions increased. We tried to predict the effects of tire tread
amendment with an additive model in which concentrations
of PAHs solubilized from LMC sediment were increased by
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the bioavailable percentage of each PAH in GF80A tire tread
(Table 4) multiplied by the weight of tire tread added to these
incubations. The additive model underpredicted actual changes
in fluoranthene and benzo[a]anthracene solubilization, but
overpredicted dibenzo[a,h]anthracene concentrations (data not
shown).

The differences between the actual and predicted changes
in gut fluid solubilization from amended sediments may result
from the presence of an unmeasured constituent in GF80A tire
tread, or from the many component interactions of compounds
solubilized by the digestive micelles in gut fluid. Experiments
with pairs of lipids have shown both synergistic and antago-
nistic interactions between solubilizates in gut fluid [49]. Sur-
factant micelles dynamically adjust sizes and shapes depending
on their constituents [50]. For example, fatty alcohols serve
as cosurfactants, increasing micelle size and capacities for
more nonpolar compounds like cholesterol [50].

CONCLUSION

This paper demonstrates the potential for harmful biological
impacts of anthropogenic particlesto adeposit-feeding animal.
Organic contaminants associated with these particles tend to
be bound strongly, resulting in increased solid-water parti-
tioning coefficients relative to natural organic matter in sed-
iments, and decreased predictions of bioavailability using EqQP.
However, the gut fluids of A. marina solubilize much greater
concentrations of PAHs from some anthropogenic particles
than are available to water. This enhanced exposure likely is
due to surfactant micellesin the digestive fluids of thisanimal.
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